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Introduction 

The plan for this post-doctoral research in the Queensland Brain Institute (QBI) at the University 
of Queensland (UQ) was to continue and expand on the work of Samuel Powell’s doctoral thesis 
[1], retaining collaborative links to the other laboratories. Powell’s thesis examines and quantifies 
polarized light underwater using new technology he helped design and tested, partly in Australia. 
One of his findings is that it is possible to use the patterns in the polarization state of underwater 
light-fields for navigation tasks such as maintaining a particular heading, or even determining 
global location. As a Ph. D. student in Professor Viktor Gruev’s lab at Washington University in St. 
Louis, he helped develop a high-resolution, real-time, visible-spectrum polarization camera based 
on the Mantis Shrimp (Stomatopod) eye [2]. His contributions were the optimization of a critical 
step in the fabrication process, a polarimetric calibration methodology [3], real-time signal 
processing routines for viewing live polarization video [4], and at the core of his doctoral thesis, 
an underwater housing for the polarization camera—developed in collaboration with the marine 
biology labs of Professors Justin Marshall and Tom Cronin at QBI/UQ and the University of 
Maryland, respectively. The marine biologists on our team have used the camera system to 
investigate visual systems and behaviors of polarization-sighted marine animals [5], Powell’s 
research has focused on investigating how we can navigate using the highly structured nature of 
the patterns we observe in the polarization state of background light underwater. One thing we 
don’t know is if marine animals do this also, opening up whole new areas of both biological and 
applied engineering that will learn from each other.  

Underwater light is typically highly polarized due to the high level of scattering in the marine 
environment [6]. The polarization state as a whole is derived from many factors—hydrosol 
concentrations, suspended particulates, surface waves, and atmospheric conditions including 
cloud cover and sun position [7]–[10]. One thing we have observed is that when the sun is un-
occluded, the polarization angle of the light field is primarily influenced by its position. Using a 
combination of machine learning techniques with a simple physics-based model of underwater 
scattering, Powell has shown that it is possible to infer the sun’s position from a set of polarization 
angle measurements taken at multiple compass headings [11]. Knowing the sun’s position and 
the current time enables the use of classical celestial navigation techniques for maintaining a 
course or determining global location. While other groups have focused on performing navigation 
tasks using the underwater view of the celestial polarization patterns, to our knowledge we are 
the first to focus on using the horizontal light field for a practical navigation solution.  

The primary research goals under the support of this funding was 1) to refine the underwater 
polarization navigation techniques Powell developed as a graduate student, and 2) to explore 
how polarization-sighted animals might use polarization signals for navigation. To summarize 
our accomplishments under this funding: 

a) We assessed the instrument and method that Powell developed for shortcomings and
determined that the sensor system and measurement protocol were the best target for
improvement, in particular to make the system compatible with an underwater vehicle.

b) We developed a preliminary model of the noise in the underwater light field’s polarization 
state due to wave action at various wind speeds so that we can design our instrument to
measure the highest signal-to-noise ratio features.

c) We prototyped and assessed three different panoramic imaging techniques for measuring 
the underwater light field without moving parts: all three techniques are viable but the
fisheye lens and multi-camera solutions use less custom hardware than the conical mirror 
technique.

These outputs are detailed below under the original aims of the proposal. 
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Aim 1: Improving polarization-based underwater navigation. 

Over the course of developing our underwater celestial navigation solution, we identified several 
areas for improvement. The system is composed of several modular stages from the polarization 
sensor and measurement protocol to the various processing algorithms: sensor calibration, 
feature extraction, and inference. While improvement in any of these stages could increase 
navigation accuracy, we decided to focus our effort on improving the measurement protocol and 
sensor system for a variety of reasons. 

The existing measurement system, as described in [11], consists of an almost completely custom 
underwater polarization video camera system. The CCD polarimeter [12], was hand-assembled 
and mounted in a rebuilt underwater camcorder housing with a compact PC and power supply. 
Physically, the system was about 40 cm (1’4”) long and weighed about 10 kg (22 lbs). The system 
consumed approximately 20W of power and produced about 1 GB of data per minute of recording 
(the CPU was not powerful enough to both compress the data and display live polarization video 
simultaneously). This limited the system to approximately 2 hours of runtime, which could be 
extended to about 6 hours by running in a time-lapse mode. The camera system is good for 
general underwater polarization videography, as it was designed, but is inappropriate for certain 
navigation experiments such as long-term recordings or mounting on an autonomous or remotely 
operated underwater vehicle (AUV or ROV). The physical improvements we focused on were 
reducing the system size, weight, and power requirements, and updating the CPU to the current 
state-of-the-art.  

The measurement protocol for the underwater navigation project consisted of setting the camera 
on a tripod and rotating it about the zenith axis to capture the horizontal light field. The pose of 
the camera was measured using a high-precision compass (magnetometer and accelerometer) 
package. While stationary, the compass gives heading, roll, and pitch with RMS error less than 
0.5°, but the package does not have an integrated gyroscope, so it is unable to compensate for 
rotational movement. Thus, we had to pause the camera rotation regularly to let the compass 
settle before moving again. This slowed the measurement protocol so that each acquisition 
required approximately 2 minutes to complete. To improve the measurement protocol our goals 
were to reduce the number of measurements, focusing on those with the highest signal to noise 
ratio, and to reduce the level of human interaction so that the device could be used more easily 
with an AUV or ROV. 

Aim 1.1: Underwater light field noise analysis 

The most effective measurement strategy for the underwater light field will focus on the highest 
signal-to-noise ratio features (whether they or polarization signals or otherwise). Variations in 
the in-water light field are caused by movement of the sun, changing weather conditions, 
changing water quality, and waves at the water surface. In this case, the changes caused by the 
movement of the sun are our signal and we treat the remainder as noise sources. We focused our 
effort on simulating the noise contribution of water waves as it is both an obvious noise source 
and the most tractable. 

Several groups have published on the use of the celestial polarization pattern as it is seen from 
underwater as a navigation cue [13], [14]. It would also be possible to use a direct observation of 
the sun from underwater for solar navigation. The purpose of this analysis was to determine 
which features are worth measuring under the noise of water waves: the intensity of the sky 
(including the image of the sun), the polarization of the sky, the in-water intensity, or the in-water 
polarization. 
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The noise analysis was performed numerically. First, wave height maps were generated for 3 and 
10 m/s wind speeds using the Fourier transform method [15]. Wave slope histograms were 
computed from these. The SCIATRAN software package was used to simulate the celestial 
polarization patterns at various sun elevations [16], and these sky images were then refracted 
through each wave slope with weighted statistics accumulated according to the slope histograms. 
The SCIATRAN simulations do not include the direct image of the sun, so this was independently 
refracted through the wave surfaces. For the in-water noise, the same statistics were computed 
but instead of refracting the whole sky, the direct sun ray was refracted through each wave slope 
and then scattered once, as per [11]. 

The simulation results are presented in Figs. 1-3. It is clear from this analysis that there is less 
noise in the intensity channel than polarization when looking up at the sky from underwater, and 
less noise in the polarization than intensity for the scattered in-water light field. Because the 
strongest intensity feature in the sky is the image of the sun and it was not included in the same 
statistics due to the limitations of SCIATRAN, it is not fair to compare the noise levels of the 
intensity of the sky to the in-water polarization. However, our intuition is that in shallower waters 
it would make sense to look directly up at the sky and sun and in deeper waters, where the image 
of the sky is destroyed by forward scattering the in-water polarization patterns become more 
salient. A more comprehensive simulation or real-world measurements would be required to test 
where such a cross-over would happen.  

Aim 1.2: Assessing panoramic polarization imaging techniques. 

Reducing the level of human interaction required for measurements and increasing the speed of 
measurements are both necessary to integrate the system with an AUV or ROV. To this end, we 
assessed 3 established techniques for panoramic imaging, modified for polarimetric imaging: 1) 
Using a fish-eye lens with a field-of-view greater than 180°, 2) using a catadioptric (lens & mirror) 
panoramic camera, and 3) using multiple cameras arranged in a ring. 

As described in [11], we have previously captured polarization imagery using a standard 185° 
fisheye lens on the polarization camera. For the navigation application, we require the 
polarization information about the horizon, which we can capture with the 185° lens pointing 
straight up. This strategy works, but has shortcomings. The biggest issue is that the percent of 
pixels imaging unimportant regions is quite high—leading to inefficiency in both the material cost 
of the system and the information that must be processed. The unimportant regions can also 
include overly bright areas outside the exposure range of the horizon, causing problems for auto-
exposure algorithms, or in the worst case, excessive bloom that corrupts the important part of 
the image (see Fig. 4). In our assessment, the fisheye lens approach is workable, but not ideal.  

Our second approach for capturing an underwater polarization panorama was the use of a 
catadioptric (i.e. combined refractive and reflective optics) panoramic camera [17], [18]. For 
polarization imaging, we made use of a standard Canon PowerShot S120 point-and-shoot camera 
aimed down at a conical mirror on loan from Prof. Srinivasan, also at the Queensland Brain 
Institute. Polarization filter rings were constructed from high-quality waterproof polarizing film 
cut into strips at 0°, 60°, and 120°, then wrapped into a tube and stabilized with wooden rings at 
either end (see Fig. 5). Photos were taken with each ring placed around the mirror in turn. The 
first trial of this system in air is illustrated in Fig. 5, successfully showing the expected 
polarization patterns of the sky. Unfortunately, when taken underwater (Fig. 6) the mirror 
tarnished within minutes, corrupting any polarization signal. 

This prototype system was indeed less bulky than the original system and the use of commodity 
camera hardware reduced the system cost and complexity. However, the mirror was an 
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unfortunate combination of heavy and fragile, inappropriate for field work. To deploy the 
catadioptric system we would need to design and fabricate a custom mirror with the correct field 
of view and mount it within a glass dome or tube housing to prevent tarnishing. The system did 
require human interaction to swap the polarization filters, but this could be avoided by 
constructing a tube from appropriately patterned polarization film. Our final assessment was 
again that the system is workable, but designing a custom mirror and housing for it was 
prohibitive. 

The final panoramic system we assessed was based on recording from multiple small wide-angle 
fixed-focus cameras simultaneously. We constructed the system using an NVIDIA Jetson TX1 
embedded computer with the Auvidea M100 and J106 add-on boards for connecting to 3 Sony 
IMX-219 cameras, a battery, and storage. The entire system fit within a Nikon DSLR underwater 
housing with a 6” dome port. The same polarization filter tube system as used with the 
catadioptric system was employed for polarization imaging. To prevent the image of the surface 
from reflecting off the inside of the tube, a black cap was added to the top of each tube. The 
cameras were fitted with Demarren Technology Corp 190° fisheye lenses to achieve overlapping 
fields of view. Photos of the system and example measurements are shown in Fig. 7. 

This system was the most convenient and flexible, given the form factor and use of small 
commodity cameras. However, combining the 3 frames into a seamless panorama will require at 
least geometric calibration of the cameras and testing of stitching algorithms. The Jetson CPU and 
cameras are efficient—we were easily able to record and compress HD video from the 3 cameras 
simultaneously for at least 4 hours on a 1.3 Ah capacity battery. This is the most promising 
panoramic imaging technique so far. The remaining challenge will be integrating polarization 
filters with the system so that human interaction is unnecessary. 

Aim 2: Do marine animals use polarization for navigation? 

The second aim of this research was to determine how marine animals could use the polarization 
features of the underwater light-field for navigation tasks. As an initial investigation, we have 
simulated the “squid’s eye view” of the scattered in-water light as shown in Fig. 8. This simulation 
is based on the squid’s retinal pattern, consisting of only vertical and horizontal polarization 
sensitivities, and the neurologically based “polarization distance” metric [19], [20]. The resulting 
pattern includes high-contrast spots both towards and away from the sun, which could easily be 
used as a compass cue by the animal. Interestingly, this limited view of the light field also includes 
sufficient information to infer the elevation of the sun in the sky. The pattern would also lend 
itself well to simple algorithms like centroid-finding, which could be of great benefit to the 
technical development of our navigation system. 
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Figure 1. Simulated view of the sky through the water surface. Top row: normalized intensity, in 
false color. The sun’s position is marked by a black dot. Middle and bottom rows: intensity noise 
due to waves at 3 m/s and 10 m/s wind speeds, respectively. The noise is normalized to the signal 
level to enable comparison. The contour around the sun’s position surrounds the area that the 
sun’s image is 99% likely to fall within. Each plot shows the entire hemisphere with the Lambert 
equal-area azimuthal projection—the centre is vertical and each concentric gridline is 15° down 
to the horizon. The extra dotted grid line is at 48°, the boundary of Snel’s window with a flat 
surface. 
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Figure 2. Simulated view of the sky through the water surface. Top row: degree of polarization. 
The sun’s position is marked by a black dot. Middle and bottom rows: polarization noise due to 
waves at 3 m/s and 10 m/s wind speeds, respectively. The noise is normalized to the signal level 
to enable comparison. The polarization variance is measured by treating the (S1, S2) vector as 
Rayleigh distributed. Each plot shows the entire hemisphere with the Lambert equal-area 
azimuthal projection—the centre is vertical and each concentric gridline is 15° down to the 
horizon. The extra dotted grid line is at 48°, the boundary of Snel’s window with a flat surface. 
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Figure 3. Scattered in-water light field. Left: patterns with a smooth water surface, middle: noise 
at 3 m/s wind, right: noise at 10 m/s wind. The noise levels are normalized to the signal so they 
can be compared. Top triplet: intensity, bottom triplet: polarization. The polarization variance is 
measured by treating the (S1, S2) vector as Rayleigh distributed.  

 

 

Figure 4. Polarization image captured with a 185° fish-eye lens. Left: intensity, middle: degree of 
polarization, right: angle of polarization. A metal disk is used to block direct sunlight from 
blooming on the image sensor. If the disk is not positioned accurately it both blocks a region we 
could have imaged and the bloom from the sun corrupts data across a large vertical region of the 
image (outlined in red). The region of interest for the navigation system is between the green 
rings. 
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Figure 5. Catadioptric polarization imaging in air. Upper left: set-up with camera pointing down 
at a conical mirror with polarization filter tube, upper right: image captured by the set-up, lower 
strips: intensity image, degree of polarization, and polarization angle. In this case, the sun is 
blocked by the operator’s body. 
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Figure 6. In the marine environment, the mirror tarnishes too quickly to obtain usable images, 
even when it’s repolished before each dive. Top: images with each polarization filter (0°, 60°, 
120°). A piece of vinyl tape blocks the reflection of the sun. Bottom: intensity, degree of 
polarization, and angle of polarization images—the noise from the tarnished mirror and slight 
shifts of the camera has destroyed any usable polarization signals. 
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Figure 7. Multiple camera solution. Top: the camera system fits within a standard DSLR 
underwater housing. Bottom: intensity, degree of polarization and angle of polarization images. 
Bubbles and internal reflections from the polarizer tube (particularly visible in the center image) 
introduce confounding polarization signals, but the expected pattern is otherwise clearly visible.  
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Figure 8. Squid’s eye view of the scattered in-water light. Top to bottom: sun at 75°, 45°, and 15°  
elevation. The horizontal axis is the heading relative to the sun: the center is to the sun and the 
edges are away. Of note are the high-contrast spots at 0° and 180° heading, which would provide 
an easy navigation cue. Their elevation above and below the horizon is correlated to the elevation 
of the sun. 

DISTRIBUTION A:  Approved for public release; distribution unlimited


	DTIC Title Page
	SF 298
	17IOA077 Final Performance Marshall



